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Gensyn Litepaper

The hyperscale, cost-efficient compute protocol for the world’s deep learning models

Background

The computational complexity of state-of-the-art Artificial Intelligence (AI) systems is
doubling every 3 months, vastly outstripping compute supply. As a founding team--whether
we've been publishing research into the evolution of deep neural architectures or building

hurricane damage prediction models--we've experienced these limits first hand.
GPT-3 175B, the largest GPT-3 model proposed by OpenAI in Brown et al. (2020) used a
cluster of 1,000 NVIDIA Tesla V100 GPUs for training - roughly equivalent to 355 years of

training on a single device. DALL-E from Ramesh et al. (2021), another Transformer model
from OpenAI, has 12 billion parameters and was trained on over 400 million captioned

images. OpenAI bore the cost of training DALL-E but controversially refused to open source
the model, meaning that perhaps one of the most important state-of-the-art multimodal deep
learning models remains inaccessible to all but a select few. The huge resource requirements

for building these foundation models create significant barriers to access, and, without a
method to pool resources whilst still capturing value, will likely cause stagnation in AI

advancement. Many believe that these generalised models are the key to unlocking Artificial
General Intelligence (AGI), making the current method of training in isolated, artificial silos
seem absurd.

Current solutions which provide access to compute supply are either oligopolistic and
expensive or simply unworkable given the complexity of compute required for large-scale AI.

Meeting the ballooning demand requires a system which cost-efficiently leverages all
available compute (as opposed to today’s ~40% global processor utilisation). Compounding
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this problem right now is the fact that the compute supply itself is hamstrung by asymptotic
advances in microprocessor performance - alongside supply chain and geopolitical chip

shortages.
We’ve spoken with more than 150 CTOs, machine learning (ML) researchers, and ML

engineers who consistently describe the painful trade-off between purchasing their own
hardware and sacrificing scalability, or renting scalable cloud resources for vastly increased
costs. They recognise that cloud costs are typically inflated by provider profit margins and

often wonder why on-demand, serverless-style compute doesn’t exist for their ML work.

Voluntary grid computing services like SETI@Home, Folding@Home, and BOINC

demonstrate that trustless, voluntarily-networked, latent compute can be used to solve some
of humanity’s biggest problems. However, they predominantly solve embarrassingly parallel
problems such as 3D rendering, where computational work can be trivially split and verified

owing to its state independence. ML problems (besides niche tasks like hyperparameter
optimisation) are inherently state dependent, requiring new methods for both parallelisation
and verification. Volunteer networks alsofunction only by modelling participants as rational

actors in a philanthropic system; adding financial transactions drastically changes the
incentive mechanisms and introduces the spectre of exploitation.

Decentralised blockchain protocols extend the concept of grid computing into financially-
incentivised, trustless environments. Specifically, Ethereum moved the space beyond the
transaction use-cases of Bitcoin to more general on-chain computational work. This was

achieved by incorporating a Turing-complete language (Solidity) and rewarding compute
providers through variable gas fees.

Ethereum, however, achieves trustless consensus only via extremely expensive on-chain
replication of work. This is completely unsuitable for deep learning. Training a small MNIST
neural network (~400M processor operations) takes ~8 minutes on an average laptop but

would take ~80 days on Ethereum at a cost of approximately $32m. To address this, Truebit
showed that it's possible to perform simple computational work off-chain (and thus with less

overhead) and prove to the chain that it was performed correctly. They achieved this by
modelling participants as financially-rational actors and carefully constructing incentive
structures. Specifically, they solved the verifier's dilemma by intermittently requiring

workers to produce incorrect work and awarding verifiers with a jackpot if they spot it.
Despite these improvements, the work must still be replicated off-chain. This is unsuitable

for activities with extreme computational expense (e.g. deep learning), and a cost-efficient
off-chain compute system must exist if deep learning work is to be serviced in a trustless way.

Problem

A protocol which trustlessly connects and verifies off-chain deep learning work in a cost
efficient way has five main challenges.
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Work verification

In order to build a truly trustless compute network, with economic incentives for
participation, the network must have a way to verify that deep learning computational work

has actually been performed as promised. Central to this problem is the state dependencyof
deep learning models; that is, each subsequent layer in a deep learning model takes as an

input the output of the previous layer. Therefore, to validate work has been completed at a
specific point, all work up to and including that point must be performed. We’ll cover this in
more detail later but it’s a fundamental problem that until now has had no viable solutions.

Market

A marketplace for compute is subject to the same supply and demand issues that any new

marketplace faces, with a few unique challenges too. Principally there is a cold-start issue,
where supply and demand liquidity need to roughly match from the beginning in order to
grow successfully. In order to capture latent compute supply, there must be a clear reward for

participants to pledge their compute time. Computational work must be tracked and
proportional payments made to the providers in a timely manner. For more traditional

marketplaces, this is performed using intermediaries which handle administration and
onboarding, with minimum payouts to reduce overheads. Unfortunately, this approach
becomes costly to scale and results in a threshold equilibrium where only a small portion of

the supply can be economically captured.

Ex-ante work estimation

Similar to Ethereum, ML computational work is subject to the halting problem - where it is at
times impossible to quantify the amount of computational work required by a defined task
and more specifically whether it will ever end (or halt). In the context of deep learning, this

has become more significant relatively recently as models and frameworks have switched
from static graph construction to dynamic construction and execution.

Privacy

With the growth of stronger personal privacy regulations around the world (e.g. GDPR,
CCPA, LGPD), privacy-conscious design and development has become an expected practice

for organisations. Whilst large amounts of ML research can be performed on open datasets,
final model fine-tuning often uses proprietary user data. More specifically, in our interviews

with ML engineers and CTOs, they indicated that data privacy was orders of magnitude more
important than model privacy.
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Parallelisation

State of the art deep learning models are typically trained in parallel over large clusters of
hardware in order to access scale that is unachievable with a single device. The techniques

required to achieve this parallelisation have improved drastically through recent research,
with current state-of-the-art transformer models like Switch Transformers proposed by

Fedus, Zoph, and Shazeer (2021) now inherently highlyparallelised by nature. Combining the
performance requirements of the ML work with the untrusted and unreliable nature of the
compute sources means that a high degree of parallelisation is essential in any solution.

Solution

Gensyn Protocol

The Gensyn Protocol is a layer-1 trustless protocol for deep learning computation that
directly and immediately rewards supply-side participants for pledging their compute time to

the network and performing ML tasks. The protocol requires no administrative overseer or
legal enforcement, rather facilitating task distribution and payments programmatically
through smart contracts. As described above, the fundamental challenge in building this

network is the verification of completed ML work. This is a highly complex problem that sits
at the intersection of complexity theory, game theory, cryptography, and optimisation.

A simple solution is to check the honesty of workers by re-doing their work. At a bare

minimum, this requires a doubling of the operations required ('single replication'); however,
even with replication, the issue of trust remains unless the verifying party is the actual

requestor of the work (in which case, they wouldn't request the work as they'd simply
perform it themselves). Therefore, ensuring the honesty of the verifying party can generate
an infinite chain of replication, where each new verifier is required to check the work of the

previous verifier.

We solve this verification problem by interlocking three key concepts into a robust solution

that is
\gt 1,350 \%>1,350%
more efficient than existing best-practice replication methods; in doing so, it solves the

infinite-chain problem. The key concepts are:

Probabilistic proof-of-learning

Following Jia et al. (2021), we use the metadata from gradient-based optimisation processes

to construct certificates of work performed, which can be verified quickly through replication
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of certain stages.

Graph-based pinpoint protocol

Following Zheng et al. (2021), we use a multi-granular, graph-based pinpoint protocol and
cross-evaluator consistent execution to allow verification work to be re-run and compared for
consistency, and ultimately confirmed by the chain itself.

Truebit-style incentive game

Following Teutsch and Reitwießner (2019), we use staking and slashing to construct an
incentive game ensuring each financially-rational participant behaves honestly and performs

their intended tasks.

Participants

These concepts are used to construct a system with four main participants: Submitters,
Solvers, Verifiers, and Whistleblowers.

Submitters

Submitters are the end-users of the system, providing tasks that will be computed and paying
for units of work completed.

Solvers

Solvers are the main workers of the system, performing the model training and generating
proofs to be checked by Verifiers.

Verifiers

Verifiers are key to linking the non-deterministic training process to a deterministic linear
computation, replicating portions of the Solvers’ proofs and comparing distances with

expected thresholds.

Whistleblowers

Whistleblowers are the final line of defence, checking Verifiers’ work and challenging in the

hope of receiving a jackpot payout.

Underlying source: Gensyn 
Annotations: Sandeep C. Ramesh 
More: sandeepramesh.com



6/16

Usage

Typical protocol usage will pass through eight stages, with the above roles performing
specific tasks.

Task Submission

Tasks take the form of three specific pieces of information:

1. 1.

Metadata describing the task and hyperparameters;

2. 2.

A model binary (or skeleton architecture); and

3. 3.
Publicly accessible, pre-processed training data.

In order to submit a task, Submitters specify the details of the task in a machine-readable
format and submit these to the chain along with the publicly accessible locations of the model

binary (or machine-readable architecture) and pre-processed training data. The publicly
available data could be stored in a simple object store such as Amazon’s S3 or in a
decentralised store like IPFS, Arweave, or Subspace.

For privacy-preservation, models can be constructed using secure mapping layers (a form of
functional encryption) as proposed by Lan, Liu, and Li (2020) and the publicly accessible
training data encrypted. In this way, models can be trained on ciphertext with a small

accuracy penalty (
\lt0.5\%<0.5%

).
When submitting a task, an estimate of required work is generated by constructing and
unrolling a computational graph into the required operations. These operations are weighted

using values similar to Ethereum's Opcode gas values in order to calculate a rough sum of
computational work to be performed. The transaction fee paid by the Submitter can then use

this estimate, with any excess (e.g. due to pessimistic profiling) returned to the Submitter
after computation. Crucially, unrolling the graph requires set limits to be placed on logic
which can trigger the halting problem.

Tasks form the smallest quantity of ML work that can be pushed to the protocol. Using
parallelisation, larger computational workloads can be split into sets of tasks and pushed to

the network asynchronously. Using this approach, large-scale language models and other
state-of-the-art models can be built, as Diskin et al. (2021) demonstrated with volunteer
compute.
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Profiling

The profiling process establishes a baseline distance threshold for the proof-of-learning
verification. Verifiers will periodically grab profiling tasks and generate variation thresholds

for proof-of-learning comparisons. To generate a threshold, a Verifier will deterministically
run and re-run portions of the training with different random seeds, generating and checking

their own proofs. In doing this, the Verifier will build up an aggregate expected distance
threshold that can later be used as a threshold to validate the non-deterministic work of the
Solvers.

In order to ensure the honesty of the Verifiers when generating the distance thresholds,
Whistleblowers are expected to re-run the profiling work and challenge Verifiers where

appropriate, using the same graph-based pinpoint challenge and contract arbitration
mechanisms described below.

Training

Following profiling, the task enters the common task pool (analogous to the Ethereum
mempool). A single Solver is selected to perform the task and the task is removed from the
task pool. The Solver performs the task according to the metadata submitted by the

Submitter and using the model and training data supplied. Whilst performing the training
task, the Solver also generates a proof-of-learning by checkpointing at a scheduled interval
and storing metadata from the training process (including parameters) so that the following

optimisation step can be replicated as accurately as possible by a Verifier.

Proof generation

Proof generation follows the process outlined in Jia et al. (2021), whereby Solvers

periodically store the model weights or updates along with the corresponding indices from
the training dataset identifying the samples that were used to generate the weight updates.

The checkpoint frequency can be tuned to provide stronger guarantees or to save on storage
space. Proofs can be “stacked”, meaning that a proof can start from the random distribution
used to initialise the weights or from pre-trained weights generated with their own proof.

This allows the protocol to build up a set of already-proven, pre-trained base models (i.e.
foundation models) which can be fine-tuned for more specific tasks.

Verification of proof

Following task completion, Solvers register the completion of the task with the chain and
present their proof-of-learning in a publicly accessible location for access by Verifiers.

Verifiers pick up verification tasks from a common task pool (again analogous to the
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Ethereum mempool) and perform the computational work to re-run portions of the proof
and perform distance calculations. The resulting distances are then used by the chain (along

with the threshold calculated during the profiling stage) to determine whether the
verification matches the proof.

Graph-based pinpoint challenge

Following verification of the proof-of-learning, Whistleblowers can replicate Verifier work in
order to check that the verification work itself has been performed correctly. In the event that

a Whistleblower believes that verification has been performed incorrectly (maliciously or
not) they can challenge the Verifier to contract arbitration in order to receive a reward. This
reward can come from Solver and Verifier deposits in the case of a true positive or from the

jackpot treasury in the case of a false positive. The challenge process follows the procedure
outlined in Zheng et al. (2021) and uses the chain itself to perform the arbitration.

Following Teutsch and Reitwießner (2019), Whistleblowers (in their case Verifiers) are only
expected to verify and subsequently challenge work in the event that they expect to receive
appropriate compensation. In practice, this means that Whistleblowers are expected to join

and leave the network depending on the number of other active (i.e. with live deposits and
challenging) Whistleblowers. Therefore, the expected default strategy for any Whistleblower
is to join the network when there are a low number of other Whistleblowers, post a deposit,

randomly choose an active task, and begin their verification process. Following the
conclusion of the first task, they would grab another random active task and repeat until the

number of Whistleblowers increases above their determined payout threshold, whereupon
they would leave the network (or more likely, switch to performing another role in the
network--Verifier or Solver--depending on their hardware capabilities) until the situation

reverses again.

Contract arbitration

When a Verifier is challenged by a Whistleblower, they enter a process with the chain to

whittle down the location of a disputed operation or input, culminating in the chain
performing the final basic operation and determining whether the challenge was justified. In

order to maintain the honesty of the Whistleblowers and overcome the verifier’s dilemma,
the protocol introduces periodic forced errors with jackpot payouts, as proposed by Teutsch
and Reitwießner (2019).

Settlement

In the settlement process, participants are paid according to the conclusions of the
probabilistic and deterministic checks. Different payments are made in different scenarios

depending on the outcome of the prior verification and challenges.
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If the work is deemed to have been performed correctly and all checks have passed, the
Solver and Verifier are both rewarded according to the operations performed.

Scale and cost-efficiency

Building the marketplace as a Web3 protocol removes the centralised overheads on scaling

and reduces the barriers-to-entry for new supply participants, allowing the network to
potentially encompass every computing device in the world. Connecting all devices through a
single decentralised network provides a level of scalability that is currently impossible to

achieve through any existing provider, giving unprecedented on-demand access to the
entirety of the world’s compute supply. For end-users, this completely dismantles the cost vs

scale dilemma and provides a transparent, low, cost for potentially infinite scalability (up to
worldwide physical hardware limits).

Creating a marketplace where prices are determined by market dynamics, and the market is

open to all participants, allows the unit cost of ML compute to settle into its fair equilibrium.
This sidesteps the usual moats that large providers enjoy, significantly drives down prices,

and facilitates truly global competition at the resource level. Whilst current compute costs for
end-users incorporate large margins for their oligopolistic suppliers, the Gensyn Protocol will
ensure that the remaining margin, decreased by fair competition, is proportionally captured

by every participant.

With Ethereum’s move from proof-of-work to proof-of-stake in Eth2, many miners with

powerful GPUs (e.g. NVIDIA V100s) will be left without a yield. These miners can currently
expect a return of around $0.20 to $0.35 per hour, which even now, when subtracting
amortized capital purchase and electricity costs, provides a tight marginal return. The delta

between the current yield expected by these miners with ML-capable hardware and the
average hourly cost of the same hardware from the main providers, alongside the likely
disappearance of Eth mining, forms a huge opportunity for the Gensyn Protocol; it also

allows the hardware to generate returns on useful processor cycles - as opposed to merely
calculating hashes in proof-of-work systems. Capturing this mining supply, alongside other

general sources of latent compute, leads to a projected hourly cost of around $0.40 per hour
for NVIDIA V100-equivalent computation on the Gensyn Protocol, 80% cheaper than AWS
on-demand.

Provider

Approximate hourly cost for ML training work (V100-equivalent)

Scalability

Ethereum

$15,700
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Low

Truebit (+ Ethereum)

$12

Low

GCP on-demand

$2.50

Medium

AWS on-demand

$2

Medium

Golem Network

$1.20

Low

Vast.ai

$1.10

Low

AWS spot instances (unreliable)

$0.90

Medium

GCP spot instances (unreliable)

$0.75

Medium

Gensyn (projected)

$0.40

High
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Single GPU in datacentre

$0.40

None

Single personal GPU

$0.28

None

Protocol evaluation

We evaluate our solution through Python simulations in order to assess the magnitude of
performance gains delivered by the Gensyn protocol. In this instance, we gauge performance

as the aggregate time in seconds taken to complete a 100 epoch training job on a small
MNIST image classification model. We test this on a 6-Core Intel Core i7 processor.

We compare the protocol with 3 alternative approaches: running the model locally (as

opposed to using any protocol), running the model using Truebit-inspired replication (with 7
verifiers), and running the model on Ethereum.

Despite the code lacking production-level optimisations, the results show that the Gensyn
protocol adds a ~46% time overhead to model training representing a 1,350% performance
gain versus Truebit-style replication and 2,522,477% gain versus Ethereum.

Runtime comparison between Gensyn and Truebit-style replication for an MNIST image
classification model

Runtime comparison between Gensyn and Ethereum (theoretical) for an MNIST image
classification model
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Decentralisation and governance

Governance

Gensyn Limited is the initial entity that is developing the protocol, hiring the team, and

managing the IP (prior to open source launch). Gensyn Limited is a fully remote company,
hiring talent from all over the world. Following the Token Generation Event (TGE), Gensyn

Limited will handle technical development and the Gensyn Foundation will represent the
interests of the protocol.

Tokens will be issued at the TGE by the Gensyn Foundation, which will be governed in a

decentralised manner by an elected council and make decisions based on on-chain proposals
and referenda. Initially, members of the council will be tightly mapped to core members of
Gensyn Limited and the early community in order to quickly develop the protocol. As time

goes on, the council will become more decentralised.

The Gensyn Foundation will also control a treasury that will be directed by proposals to

further the aims of the protocol by funding the continued development of the protocol itself
and the overall ecosystem. The treasury will primarily be funded by taking a very small
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percentage of each task fee.

Future development

Research

We will continue our research into three main areas to improve the protocol: probabilistic

verification of ML training using metadata from the optimisation process, pinpoint
verification of deterministic ML work for on-chain proof, and parallelisation of ML models

over heterogeneous hardware with latency constraints.

This research will strengthen the work verification guarantees and expand the utility of the
protocol to include more model primitives and a wider variety of model types.

Development

Development of the Gensyn protocol will follow three high-level phases: testnet, canarynet,

mainnet.

Testnet

Initial development will focus on building a testnet implementation of the core technology.

Tokens used by the testnet will be non-permanent, and users of the testnet will be early
adopters and core members of the community who will be rewarded at the TGE.

Canarynet

Following successful testnet iteration, the protocol will launch as a canary network parachain
on the Kusama relay chain. This phase will involve launching the canary utility token that will
have real economic value. The canary network can be seen as a beta version of the protocol

with access to the newest features and some risk associated with its use. Long-term, canary
networks typically offer slightly lower prices and access to bleeding-edge R&D functionality

in exchange for this slight risk.

Mainnet

Following a successful parachain launch on the Kusama relay chain, the next phase will be to

launch the final live parachain on the Polkadot relay chain. This phase will include the launch
of the mainnet utility token that will be the main utility token for the protocol. The mainnet
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will be the hardened, live protocol for full use by any organisation or individual. Features or
changes will go through testnet and canarynet iteration before launching on the mainnet.

Ecosystem

The Gensyn Protocol will be a foundational layer for ML compute, similar to Ethereum for

smart contract execution. Going forward, we expect others to build on top of the protocol to
provide rich user experiences and specific functionality in numerous niches. We expect this
burgeoning ecosystem to start with expert-knowledge-based applications, allowing non-

experts to build and deploy ML solutions using abstractions similar to existing Web2
solutions such as Amazon’s SageMaker and DataRobot.

Besides human knowledge in model design, there are three fundamental problems slowing
the progress of applied ML:

1. 1.

Access to compute power;

2. 2.

Access to data; and

3. 3.
Access to knowledge (ground-truth labelling).

Gensyn solves the first problem by providing on-demand access to globally scalable compute
at its fair market price. The Gensyn Foundation will seek to encourage solutions to two and

three through research, funding, and collaborations with other protocols.

Long-term vision

The Gensyn Protocol will enable anyone to train ML models for any task using a self-

organising network that encompasses every source of compute power in existence.

As Web3 Dapps increase in complexity and infrastructure requirements, they are forced to

fall back onto Web2 where Web3 resources don't exist. By decentralising ML compute, the
Gensyn Protocol brings a crucial infrastructure component natively to Web3 - reducing
reliance on Web2 and further strengthening and decentralising the entire ecosystem.

Deep learning has shown incredible generalisation power and looks set to play a huge part in
the future of ML. Foundation models, trained on the Gensyn Protocol, will be decentralised

and globally owned - allowing humanity to equally benefit from collaborative ML
development and training. Building on these foundation models using fine-tuning will be as
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simple as defining a task and paying a fair market price for the fine-tuning work - removing
the barriers that currently exist.

For decades, ML has progressed in silos, both academic and industrial. The Gensyn Protocol
connects these silos through a common infrastructure with decentralised ownership,

allowing all of humanity to quickly and collectively explore the future of artificial intelligence
as equal pioneers. Combining this network with hierarchically-trained and collectively-
owned foundation models provides a path towards a true realisation of AGI - the next step for

humanity.

Get involved

You can follow our progress on Twitter and join our community on Discord. If you're
interested in contributing compute resources, using the network for ML tasks, or joining us
then please send us a message. We'd love to chat.
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